May 16, 1984 () TES ENVIRONMENTAL PROTECTION AGENCY

Bayonne Barrel and Drum RCRA Sampling Results (NJD009871401)

Louis DiGuardia, Geologist Land Source Monitoring Section

William K. Sawyer, Attorney
Waste and Toxic Substances Branch

Thru: John Ciancia, Chief Source Monitoring Section

> Richard D. Spear, Chief Surveillance and Monitoring Branch

On February 17, 1984 a RCRA sampling survey was conducted at Bayonne Barrel and Drum by Joseph Cosentino, Karen Egnot, Steven Hale, Brian Kovak and myself. This survey was conducted at the request of the Waste and Toxic Substances Branch to determine if any actions were taken by Bayonne Barrel and Drum in order to comply with the complaint and compliance order issued May 20, 1982.

The facility located at 150 Raymond Boulevard in Newark, New Jersey was formerly in the business of cleaning and reconditioning dirty and damaged drums. The facility encompasses an area of approximately 20 acres. At the time of the inspection, operations had ceased and the company had filed for bankrupcy.

Drum cleaning operations formerly involved both closed head and open head drums. In closed head cleaning, chains and a caustic solution were used to wash out previous material in the drums. The spent solution drained through an oil-water separator into a 5,000 gallon under ground holding/settling tank and was then pumped into a 60,000 gallon above ground holding/settling tank. The liquid was decanted to the sewer under a permit to the Passaic Valley Sewage Commission. Open head drums were placed on a conveyor belt and moved through an incinerator which burned residue out of the inside. This residue material was collected in two subsurface holding/settling tanks. Approximately 40,000 lbs of incinerator ash and sludge was generated monthly.

Samples were taken from the following areas of concern:

1) Under ground 5,000 gallon holding/settling tank

Sampling #65189 - aqueous sample collected from the tank.

Sampling #65190 - composite soil sample collected from the area around the tank.

BJECT:

FROM:

TO.

2) Oil/Water Separator

Sample #65188 - aqueous sample collected from oil separator trench.

3) Subsurface tank near incinerator

Sample #65191 - aqueous sample collected from the subsurface tank. Sample #65192 - composite soil sample near subsurface tank.

4) Incinerator ash waste pile

Sample #65187 - composite soil sample taken around ash pile

Sampling equipment and containers were prepared according to EPA standard procedures prior to sampling. A total of nine (9) samples were taken, three (3) aqueous, three (3) soil, and three (3) from the ash pile.

Aqueous samples were analyzed for RCRA characteristics (ignitability and corrosivity) and non-volatile (NVOA) and purgeable (POA) organic priority pollutants. Soil and ash samples were analyzed for the characteristics of EP toxicity (metals, herbicides and pesticides) as defined in RCRA, as well as metal analysis, and priority pollutants (NVOA, POA). All analyses were performed in EPA's Edison, New Jersey laboratory. EPA standard procedures were followed for the collection of samples throughout the survey.

Sample results are given in Tables I thru VI. Results indicate that all samples contained a number of organic compounds. In the incinerator ash waste pile, EP toxicity limits for metals were exceeded for both cadmium and lead. Also, the metals scan showed high levels of heavy metal contamination in all ash and soil samples.

In addition to the above analysis, PCB's in measurable quantities were detected in sample #65187, soil by ash pile.

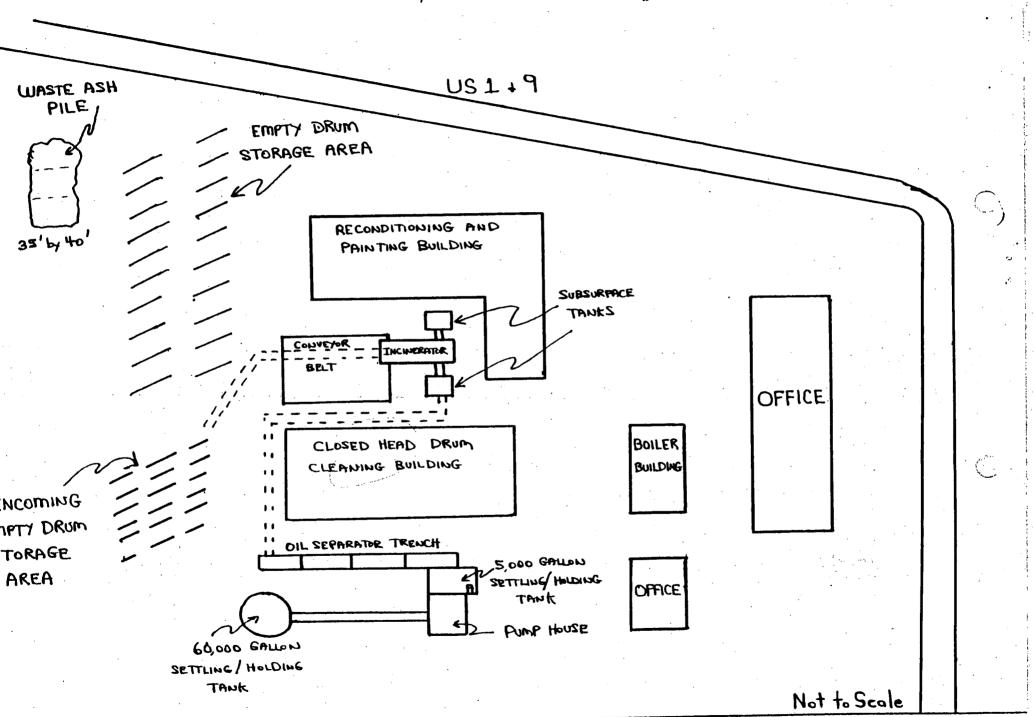

Attachments:

Figure I - Map of Facilities Grounds

Figure II - Sample Location Map
Tables I-VI - Analytical Results

Appendix I - Photographs

Appendix II - Receipt of Samples

NEW JERSEY TURNPIKE

Table I

Comparison of Waste Analysis to Characteristics of Corrosivity and Ignitability

	Maximum			
Parameter	Allowable Limit	65188	65189	65191
Ignitability	> 140°F	> 140°F	> 140°F)	> 140°F
Corrosivity	> 2.5 S.U.	*	*	6.93 S.Ú.
			<u> </u>	

S.U. - Standard Units

65188 - Oil Separator

65189 - 5000 Gallon Tank 65191 - Subsurface Tank by Incinerator

* - No Analysis Performed

Table II Comparison of Sample Analysis to Characteristic of EP Toxicity

Parameter	Maximum Concentration for EP Toxicity mg/l	65184 mg/l	65185 mg/l	65186 mg/l	65187 mg/l	65191 mg/1	65192 mg/l
Arsenic	5.0	.02K	.02K	.02K	.02K	.02K	.02K
Barium	100.0	4.0	5 . 3	1.3	1.5	.16	1.7
Cadmium	1.0	.99	1.2	.17	.08	.002K	.04
Chromium	5.0	. 02J	.01J	.04	.008K	.02J	.08J
Lead	5.0	7.6	10.0	2.4	.25	.04	.10
Mercury	0.2	.0002K	.0002K	.0002K	.001	.0002K	.0002K
Selenium	1.0	.008K	. 02J	.008K	.008K	.009J	.008K
Silver	5.0	.002K	.002J	.002K	.002J	.002K	.002K
Endrin	.02	.000008K	.000008K	.000008K	•000008K	.000008k	. 000008
Lindane	.4	.00003	.00004	.00023	.00066	.00002	.000003
Methoxychlor	10.0	.00038	.00008K	.00328	.01100	.00054	.00059
2,4,-D	10.0	.0003K	.0003K	.0073	.0080	.0003K	.0003F
Silvex	1.0	.00007K	.00007K	.00007K	.00007K	.00007K	.000071
Toxophene	0.5	.00035K	.00035K	.00035K	.00035K	.00035K	.00035

K = Actual valve less than valve given

65184, 65185, 65186 - Ash Pile

65187 - Soil by Ash Pile 65191 - Subsurface Tank Near Incinerator

65192 - Soil by Subburface Tank Near Incinerator

J = Estimated valve

Table III Results of Metals Analysis on Samples

Parameter	65184 mg/kg	65185 mg/kg	65186 mg/kg	65187 mg/kg	65192 mg/kg
Silver	3K	3J	3K	3K	3К
Arsenic	7.5	6.6	3J	23	7.0
Beryllium	lJ ·	1K	1K .	1K	1K
Cadmium	160	120	84	59	13 🗸
- Chromium	2900	1800	3300	650	1200 🗸
Copper	3300	2400	1100	1000	1100
Mercury	12	.5J	21	27	7.4
Lead	21,000	13,000	17,000	4500	2700
Nickel	250	250	79	99	850
Antimony	.8K	.8K	.8K	.8K	.8K
Selenium	.9J	5.1	.8K	4.2	2J
Thallium	.8K	.8K	.8K	.8K	.8K
Zinc	3400	3800	3500	2300	1900

K = Actual valve less than valve given <math>J = Fstimated valve

65184, 65185, 65186 - Ash Pile 65187 - Soil by Ash Pile

65192 - Soil by Subsurface Tank Near Incinerator

Table IV Results of Organics Analysis on Samples

	65188	65189	65191
Organic Compounds	ug/l	ug/l	ug/l
Fluoranthene		90J	
Isophoronnne	1800J	* - * -	1300
Nephthalene	1500J	1400	
Bis(2-ethylhexyl) phthalate	13,000	6900	
Butyl benzly phthalate		1100	
Di-n-butyl phthalate	3800J	1800	·
Fluorene		70J	
Phenanthrene	2500J	290	
Pyrene .		60 J	
Phenol		\	110J
Toluene		ţ	4900
		· ·	

J = Estimated valve
K = Actual valve less than valve given

^{65188 -} Oil Separator 65189 - 5,000 Gallon Tank

^{65191 -} Subsurface Tank by Incinerator

Table Va

Results of Organic Analysis on Samples

		·•	·		5016010	
)rganic Compounds	65184 ug/kg	65185 ug/kg	65186 ug/kg	65187 ug/kg	65190 ug/kg	65192 ug/kg
Acenaphthene			4300J	2500J	1400J	
1,2,4-Trichlorobenzene			8400	1200J		• .
1,2-Dichlorabenzene		730			·	
1,4-Dichlorobenzene		240				
1,2-Diphenylhydrazine	3200Ј	•	11000	1900J	1500J	2300J
Fluoranthene	2600J	280	15000	12000	12000	3700J
Isophorane	92000	22000	250000	27000		25000
Naphthalene	110000	8300	180000	18000	22000	12000
N-nitrosodiphenyulamine	20000	120	1700J	2000J	4800J	780J
Bis(2-ethylhexyl)phthalatel	800000	11000	1200000	990000	1200000	210000
Butyl benzyl phthalate	370000	2100	1200000	210000	400000	200000
Di-n-butyl phthalate	450000	2100	330000	110000	280000	280000
Di-n-octyl phthalate	5700J	1200	7200	3800J		770J
Diethylphthalate	9700	400		-		
Dimethylphthalate	24000	- 1				
Acenaphthylene	1200J	160		1800J		3100J
Anthracene	2300J	100	8000	3000J	-	1400J
Fluorene	. 2400J	57K	7400	3200J	3300J	1600J
Phenanthrene	12000	900	32000	17000	28000	7000
Pyrene	3600J	260	14000	15000	9000	4700J
Phenol	80000	170	46000	5800J		4700J

J = Estimated valve
K = Actual valve less than valve given

Table Vb Results of Organic Analysis on Samples

	1 -			·	
65184 ug/kg/	65185 ug/kg	65186 ug/kg	65187 ug/kg	65190 ug/kg	65192 ug/kg
160	130	480		15	
46		88	36	,	
58	380	7000	350	15	
320	67	500	16		
1300		5000	660		
47	120	160	23		
68		400	13		
	18K				
3200	1900	65000	120	580	
10000	4600	8700	1500		
1800	1300	2600	460	100	
28000	11000	320000	630	1700	
2200	1200	8100	290	19	
1600		150			
	ug/kg/ 160 46 58 320 1300 47 68 3200 10000 1800 28000 2200	65184	65184 ug/kg ug/kg ug/kg 160 130 480 46 88 58 380 7000 320 67 500 1300 5000 47 120 160 68 400 18K 3200 1900 65000 10000 4600 8700 1800 1300 2600 28000 11000 320000 2200 1200 8100	65184 ug/kg/ 65185 ug/kg 65186 ug/kg 65187 ug/kg 160 130 480 480 46 88 36 58 380 7000 350 320 67 500 16 1300 5000 660 47 120 160 23 68 400 13 18K 3200 1900 65000 120 10000 4600 8700 1500 1800 1300 2600 460 28000 11000 320000 630 2200 1200 8100 290	65184 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg l65190 ug/kg l160 l30 480 l5

65184, 65185, 65186 - Ash pile

65187 - Soil by Ash Pile 65190 - Soil by 5,000 Gallon Tank 65192 - Soil by Subsurface Tank Near Incinerator

J = Estimated valve
K = Actual valve less than valve given

Table VI

Results for PCB Analysis

PCB	#65187
Aroclor 1248	67.2 mg/kg
Aroclor 1254	117.5 mg/kg

65187 - Composite soil sample by ash pile

Appendix I - Photograph Descriptions

Photo #1 - Under ground 5,000 gallon holding/settling tank

Photo #2 - Oil-water separator trench

Photo #3 - Incinerator area

Photo #4 - Subsurface tank near incinerator (facing incinerator - left tank)

Photo #5 - Subsurface tank near incinerator (facing incinerator - right tank)

Photo #6 - Area adjacent to incinerator

Photo #7 - Incinerator ash waste pile

Photo #8 - Incinerator ash waste pile

Photo #9 - Incinerator ash waste pile

Photo #10 - Incinerator ash waste pile

Photo #1

Photo #2

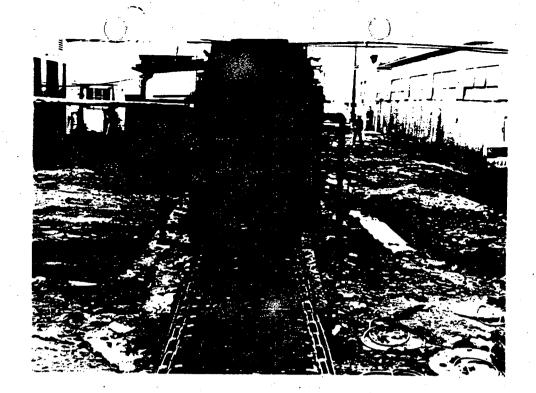


Photo #3

Photo #4

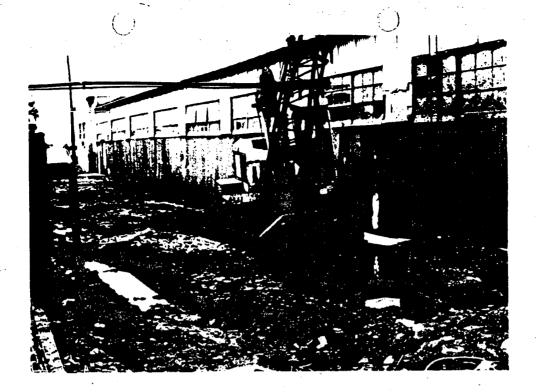


Photo #5

Photo #6

Photo #7

Photo #8

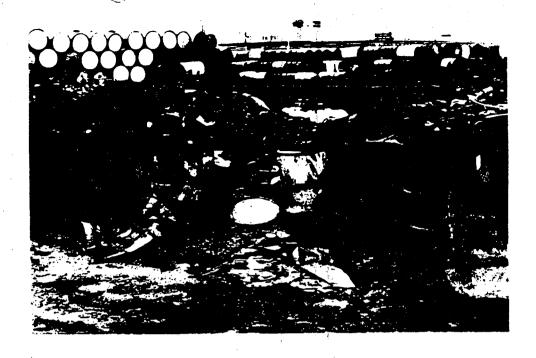


Photo #9

Photo #10

RECEIT OF SAM)LLS

ENVIRONMENTAL PROTECTION AGENCY — REGION II
SURVEILLANCE & ANALYSIS DIVISION
EDISON NEW JERSEY, ORBIT

Home of Unit and Address

Beyonne Berrel + Drum NTP 10= 7871 401 150 Roymond Bluk 2/17/54 Sample Description of Samples Corresponding # Number NVOA, NA, ET Toxicity 65184 NUCA, PA EP Toxicity 65185 NVOA, POA, EF Toxicity 65186 NUGA, PLA, EP TOXICITY 65197 A NUDA POA, ET TOXICITY, Eguitability, Coronivity (2134 NUA, MA, EP TOXICITY, Ignitability, Commenty (5184) NUCA PA C5190 3 NVOA, P.A, EP TOXICITY, Ignitobility, Commity 65131 NUCH, EF TOXICITY LOSL - US EFA 1.5132 Frank Jangella Person Assuming Responsibility for Sample: Time Sample Relinquished By: Received By: Reason for Change of Custody Number Sample Relinquished By: Reason for Change of Custody

Number				
Sample Number	Rolinguished By:	Received By:	Time Date	Reason for Change of Custody
Sample Number	Relinquished By:	Received By:	Time Date	Reason for Change of Custody